Parametric and Polar Calculus Formulas

Calculus II ~ Prof. Sally J. Keely, M.S.

Calculus of Parametric Curves

Derivatives: $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}} \quad \frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}$
Area between curve and x-axis: $\int_{t_{1}}^{t_{2}} y\left|\frac{d x}{d t}\right| d t$
Arc Length: $\int_{t_{1}}^{t_{2}} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$

Surface Area

revolved about x-axis: $2 \pi \int_{t_{1}}^{t_{2}} y \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$
revolved about y-axis: $2 \pi \int_{t_{1}}^{t_{2}} x \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$

Calculus of Polar Curves

Derivative: $\frac{d y}{d x}=\frac{r \cos \theta+\frac{d r}{d \theta} \sin \theta}{-r \sin \theta+\frac{d r}{d \theta} \cos \theta}$

$$
\text { Distance between two polar pts: } \sqrt{r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2} \cos \left(\theta_{1}-\theta_{2}\right)}
$$

Area inside polar curve: $\frac{1}{2} \int_{\alpha}^{\beta} r^{2} d \theta$
Arc Length: $\int_{\alpha}^{\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta$

Surface Area

revolved about polar-axis: $2 \pi \int_{\alpha}^{\beta} r \sin \theta \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta$
revolved about polar line $\theta=\frac{\pi}{2}: \quad 2 \pi \int_{\alpha}^{\beta} r \cos \theta \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta$

