Intermediate Algebra Formula Sheet

Intermediate Algebra ~ Prof. Sally J. Keely, M.S.

Factoring Formulae: Note that $\mathrm{F}=$ First, $\mathrm{L}=$ Last as a mnemonic.

Perfect Square Trinomials: $F^{2} \pm 2 F L+L^{2}=(F \pm L)^{2}$
Difference of Squares: $F^{2}-L^{2}=(F-L)(F+L)$
Sum of Squares: $F^{2}+L^{2}=(F-L \cdot i)(F+L \cdot i)$
(Factorable in Complex realm only; prime in \mathbb{R} eals. $i=$ imaginary number)
Difference of Cubes: $F^{3}-L^{3}=(F-L)\left(F^{2}+F L+L^{2}\right)$
Sum of Cubes: $F^{3}+L^{3}=(F+L)\left(F^{2}-F L+L^{2}\right)$

Quadratic Formula:	Equations \& Vertex of a Parabola:
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$	$y=a(x-h)^{2}+k \Rightarrow V=(h, k)$
Discriminant: $D=b^{2}-4 a c$	$y=a x^{2}+b x+c \Rightarrow V_{x}=\frac{-b}{2 a}$
	(Plug V_{x} in for x to find y-coordinate of $\left.V\right)$
Rules of Logarithms:	Pythagorean Theorem:
$\log _{b}(M N)=\log _{b} M+\log _{b} N$	$a^{2}+b^{2}=c^{2} \quad(c$ is the hypotenuse)
$\log _{b}\left(\frac{M}{N}\right)=\log _{b} M-\log _{b} N$	Change of Base Theorem:
$\log _{b}\left(M^{p}\right)=p \cdot \log _{b} M$	$\log _{b} x=\frac{\log x}{\log b}=\frac{\ln x}{\ln b}$

